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ABSTRACT

Predictive routing is effective in knowledge transfer. However, it ig-
nores information gained from probability distributions with more
than one peak. We introduce traffic multimodal information learn-
ing, a new class of transportation decision-making models that can
learn and transfer online information from multiple simultaneous
observations of a probability distribution with multiple peaks or
multiple outcome variables from one time stage to the next. Mul-
timodal learning improves the scientific and engineering value of
autonomous vehicles by determining the best routes based on the
intended level of exploration, risk, and limits.

CCS CONCEPTS

« Computing methodologies — Knowledge representation
and reasoning,.

KEYWORDS

Kullback-Leibler divergence, Information gain, Sequential decision

ACM Reference Format:

Anusha Neupane, Venktesh Pandey, Niharika Deshpande, and Hyoshin
Park. 2022. Multimodal Learning Models for Traffic Datasets. In KDD °22:
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August
14-18, 2022, Washington DC. ACM, New York, NY, USA, 5 pages. https:
//doi.org/XXXXXXX XXXXXXX

1 INTRODUCTION

Transportation has been crucial part of human life and it gets even
salient as we grow towards technology and industries. We all have
witnessed the significance of transportation in many ways and
have been a part of the consequences that it creates. Many naviga-
tion tools such as Google Maps are used now days to simplify the
way to the destination yet with the complexity of the multi-level
roads it still gets confusing and frustrating for the users. As the
traffic network system gets highly dense and complex, solving all
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the issues related to transportation may be difficult but it will cer-
tainly make people’s lives easier, and we intend to contribute to the
process by using multimodal learning in transportation. The term
"Multimodal" here refers to a probability distribution with multiple
modes. By determining the best routes based on the intended level
of exploration, risk, and limits, multimodal learning improves the
scientific and engineering value of autonomous vehicles.

In metropolitan regions, traffic congestion has a negative in-
fluence on the quality of life and economic output. It raises fuel
consumption, passenger and commercial transportation costs, the
number of accidents, and dangerous pollutants. According to an ar-
ticle based on the Texas A&M Transportation Institute’s assessment
[5], an average American commuter wastes 54 hours per year due
to traffic delays. In cities like Los Angeles the condition is worse
with the average being at 119 hours per year. The consequence of
traffic congestion does not end with wasted time, it also contributes
to the lost productivity and wasted fuel which can be hazardous to
the environment and the economy.

In highly uncertain conditions, this reduction of entropy is vital
to any optimization platform employed in the robust, efficient,
autonomous exploration of the search space. To overcome [12]’s
limitation in multimodal learning [3], we consider both standard
deviation and entropy. We target cells with the highest importance
of information distinguishing two cells with identical entropy, but
different values of information. For example, the expected statistics
of “speed classifications = [0, 50, 150, 200]” show two probability
distributions “P4 = [0.5,0,0,0.5]” and “Pg = [0,0.5,0.5,0]” with
the same entropy, but different standard deviations.

Predictive routing [1, 6] is effective in knowledge transfer, how-
ever, ignore information gained from probability distributions with
more than one peak. Consider a network with a grid laid on top
in Figure 1 (left), where each cell represents a small geographical
region. To find an optimal route from an origin cell to a destination,
forecasting the condition of intermediate cells is critical. Routing
literature did not use a location’s observed data to forecast con-
ditions at distant non-contiguous locations’ unobserved data. We
aggregate the data from all the grid cells and cluster cells that have
similar combinations of probability distributions. When one cell
of a cluster is explored, the information gained from the explored
cell can partially remove uncertainty about the conditions in dis-
tant non-contiguous unexplored cells of the same cluster. With this
new framework, we explore the best options to travel with partial,
sequential, and mixture of information gain.
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Figure 1: Each cell contains a combination of two discrete
travel time distributions (i.e., 2, 5, 10, 30min) with different
weights. Cells with a similar combination of distributions
are clustered together based on the similarity between the
combinations (e.g., 6 cells outlined in black). As users traverse
the map, exploration of a cell in a cluster will remove the
travel time uncertainty of other cells in the same cluster.

Our main contribution is the development of a new family of
online predictive decision making models, Temporal Multimodal
Multivariate Learning (TMML), that can indirectly learn and trans-
fer online information from multiple modes of probability distribu-
tions and multiple variables between different time stages, which
can be applied to many routing problems under uncertainty such as
Mars exploration [ 10], Hurricane sensing [ 6], and urban routing
[11 ]. Preliminary remedy [10 ] partially filled this gap by group-
ing similar types of locations based on their classified output (e.g.,
sandy or rocky), used in optimizing vehicle routing to improve the
prediction uncertainty proven to be superior to partially observable
Markov decision processes.

This article is focused on a part of this research project where we
focus on the process of multimodal learning and clustering for urban
routing and traffic applications. In this article, we use multimodal
learning to learn the spatio-temportal correlation between non-
contiguous geographical locations. Once a learning framework is
developed, it will then be used to design route recommendations
for travelers accounting for uncertainty in travel time across a
given region. The congestion on the roads of the area of research is
studied using a real time data of the road in a time frame. Traffic
Message Channels (TMC) can be used to determine the travel time
of a vehicle and also to inform the driver about the traffic congestion
on the road towards their destination.

The rest of article is organized as follows: Section 2 we will
review some of the literature related to the topic of multimodal
learning. Section 3 discusses the details of the multimodal learning
using traffic data. Section 4 presents some analysis results and
Section 5 concludes the paper.

2 LITERATURE REVIEW

Recent advances in approximating multimodal output distribution
[2] have well handled prediction uncertainties rather than averag-
ing the distribution. While those advanced multimodal learning
models helped the prescriptive analytics make proactive decisions
through accurate prediction of future events, sequential learning
of those approximated information has depended on unimodal or
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Figure 2: Various types of sequential information gain can be
investigated starting from the simplest model of sequential
single-type information gain in each cell (left), a sequence
of multiple independent univariate observations in each cell
with partial information gain for each stage of a process
(right) and multi-variate probability distributions are consid-
ered in diverse environments.

bimodal probability distribution. In a sequence of information learn-
ing and transfer decisions, the traditional reinforcement learning
(RL) cannot accommodate the noise in the data that could be useful
for gaining information from other locations, thus cannot handle
multimodal and multivariate gains in their reward transition func-
tion. Still, there is a lack of interest in learning and transferring
multimodal information effectively to maximally remove the un-
certainty. In this study, a new information theory overcomes the
traditional entropy approach by actively sensing and learning in-
formation in a sequence. Particularly, the autonomous navigation
of a team of heterogeneous unmanned ground and aerial vehicle
systems in Mars and Hurricane outperforms RL through indirect
learning.

We start extending standard deviation-based information the-
ory [3] to ensure that locations with broad bimodal probability
distributions are targeted over locations with narrow probability
distributions. “Correlated cells” are defined as cells with a similar
travel time probability distribution. The states of correlated cells
are probabilistic until one of them is visited and the true state is
observed. If the assumption that the cell states are correlated is true,
then visiting one cell will improve the state estimate of all cells
that share similar travel time probability distribution. Instead of
modeling the entropy of a binary state in which cells are obstructed
or clear, this new information flow framework integrates different
sources of partial entropy toward spatiotemporal information gain
of a partially correlated grid, nearby grid with a sight radius, and
measure of variation in the correlation. Using a two-agent model,
each agent performs its own exploration and develops its own route
plans using separate utility functions. While one agent focuses on
exploration, the other focuses on exploitation of the information
gained by the exploring agent.

In the the proposed multi-agent entropy-based path planning,
information is shared with other agents, influencing their route
choices. The path is planned in advance and updated as information
about the grid is discovered. As agents discover the state of the
grid, that information is conveyed to the other agents. Each agent
updates its path plan every time it moves to a new grid cell. By
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sharing information about the state of the grid cells, each agent
helps to define the optimal parameters to be used in the other
agent’s utility functions. If an identical cell is visited by another
agent and found to be in the same state as the original cell of that
type, then all agents have confirmation that the assumption that
these cells are correlated is more likely to be true.

3 MULTIMODAL TRAFFIC LEARNING

Road closures, accidents, and poor weather can all add time to our
daily commute. These delays, which can surpass users’ intended
commute time, can result in missed meetings, canceled appoint-
ments, and more, adding up to a significant amount of money. A
multi-modal urban transportation network gives travelers a variety
of options for getting around. Assume we know that a highway
connection A normally takes two minutes to travel without traffic,
but it could take eight minutes owing to an unforeseen event (e.g.,
incidents). If the bimodal trip distributions for both links are similar,
we can group A and A’ together in the same correlated group. The
literature overlooks three advantages of deploying a platoon of
vehicles to A rather than B, as depicted in Figure 4 at the bottom:
1) We can update the estimated travel time on this link A so other
drivers can modify either their departure time or route to utilize this
2-minute shortcut, in the case of a scenario that turned out to be
2-minutes due to the quick clearance of the event. 2) We can update
travel time on other links with similar probability distributions (e.g.,
A’). We can send extra vehicles to this route and relieve other route
congestion that turned out to be 8 minutes due to the extended
clearance time of the incident if we know the overall travel time of
the route is 4-minutes. 3) We update travel time on other links with
the same sort of probability distributions (e.g., A’). By knowing that
the total travel time of a route AA’ is 16-minutes, we can notify
fewer vehicles to use this route, and redistribute traffic to other
routes (i.e., BC) having shorter travel times. While the existing rout-
ing literature only considers close links, no research has been done
on the realization of multimodal travel time distributions based on
real-world data.

Grouping similar probability distributions. Clustering iden-
tifies similar probability distributions (e.g., terrain type, speed)
based on the output of the classifier Figure 2. The global corre-
lation between non-contiguous cells of an entire map are estimated
by using an expectation maximization algorithm on multimodal
mixture distributions.

N K
P(Xla ) = || | ewPxil i) (1)

i=1 k=1

where X is the data,  and f are Dirichlet parameters, P(x;|f) is
the multinomial density, i € N are the observations, and k € K are
clusters. Using Expectation Maximization, the optimal distribution
of the data over K clusters can be determined by maximizing the
lower bound of the log of the likelihood in Eq. 1. The optimal
cluster number can then be determined by minimizing the Bayesian
Information Criterion BIC = DIn(N) — 21n(f), where D is the
number of parameters, N is the total number of observations, and
L is the likelihood of the model.

Bayesian Posterior Update. After clustering, observations are
made of the environment as the agent traverses its planned path.
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Figure 3: Temporal Multimodal Learning (TML) from corre-
lation of time-varying bimodal distributions between links.

Variational Bayesian Inference was used to generate a posterior
belief given the prior belief of terrain type distributions within each
of the clusters. The posterior is approximated using the variational
multinomial distribution Q(Z) such as P(Z|X) ~ Q(Z). over un-
observed variables z € Z given data X. The dissimilarity between
the approximated posterior Q(Z) and the true posterior P(Z|X) is
then optimized by minimizing the KL [4] divergence.

D (PlIQ) = 3 Plog 55 ®

We focus on speed and tra)\(leei\,time information from the data
collected from the Regional Integrated Transportation Informa-
tion System (RITIS) [11]. RITIS combines data from a variety of
agencies, systems, and even the commercial sector to enable better
event reaction and planning decisions. A wide range of analytical
tools and features are available in RITIS. Transportation officials,
planners, researchers, and others use the RITIS as a data archiving
and analytics platform. We used RITIS to collect real time data and
information on Traffic Message Channel (TMC) of the area of our
research.

There are 39 TMCs in the region of interest and we chose TMCs
that are in the same direction. We have RITIS data for all 39 TMCs
from January 1, 2021, to September 30, 2021. The data is averaged
over a 10-minute interval, which divides a day’s 24 hours into
10 minutes. We have built a Python program that selects speed
information for a time interval of our choosing, such as 9:30 a.m. to
9:40 a.m. for a TMC of our choosing. We grouped the speed data into
speed bins once the information was gathered. The speed bins range
from 2 to 100 mph, with a 2mph spacing between them, bins range
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Figure 4: Data cleansing and downloading from the RITIS
interface for the network of Triangle Expressway.

from [2, 4], [4, 6], to [98, 100] and there are 49 speed bins in total.
We plotted the histogram of the counts and got the distribution of
speed for that TMC within the given time interval after categorizing
the data into these bins. The goal of identifying this distribution
was to create clusters of distributions that are comparable using
the clustering algorithm. For a given time interval, the TMCs that
belong to one cluster are spatially correlated. As a result, if we have
speed information from one TMC, we can update speed information
for other TMCs within that cluster, lowering uncertainty.

The distribution is then run through a MATLAB algorithm to
determine whether it is multimodal or not. The term “multimodal
distribution" refers to a distribution with two or more local max-
ima. If our distribution is multimodal, that means there is speed
variance owing to traffic congestion. The following graph depicts
the distribution of one TMC from 9:30 to 9:40 a.m. The follow-
ing data is statistically multimodal data. However, in order to ex-
hibit multimodality in the next image, we must manually draw
the density function. In Python, we used the kernel density es-
timate ("kde=true") functionality to display the multimodality of
distribution.
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Figure 5: Histogram of the counts and the speed for the TMC
within the given time interval after categorizing the data into
these bins

The map is segmented into regions of comparable cell types
using k-means clustering. The entropy and expected value of each
cell are used to build clusters. A Gap function was used to determine
the best number of clusters for the data set. When entropy is given
as a percentage rather than a decimal value, k-means clustering
works better due to scale differences. Para

4 RESULTS

We had 39 TMC for our network and we divided them into 12
groups according to their characteristics at different times as shown
in the figure 4. The correlation between the TMCs were checked or
grouped using k-means clustering. K-means Clustering is a popular
exploratory data analysis tool for gaining an understanding of the
data’s structure. It is the task of identifying subgroups in data so that
data points within the same subgroup (cluster) are extremely similar
while data points within different clusters are very dissimilar. It
attempts to make intra-cluster datasets as identical as possible to
keep less variation and make the data points homogeneous.

Figure 6: 39 TMCs separated into 10 groups according to their
characteristics. Each color represent a group.
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We performed K-means and found TMCs at certain times to
be correlated and assigned to the same cluster. The groups were
separated to identify with different colors. We made a visual rep-
resentation of the connection and similarity of the TMCs which
belonged to identical groups in different time zone comparing it
with TMC 12 (figure 7). The representation shows the TMCs are
correlated.

Group Legend
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Figure 7: Connection of TMCs correlating to TMC 12
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The major objective is to decrease uncertainty in speed predic-
tion by utilizing the information gained through spatiotemporal
correlation between TMCs. Figure 8 illustrates the significant per-
cent decrease in prediction uncertainty that occurs. The reduction
in uncertainty is greater when speed readings using TML are in
close proximity to historical observations.

Figure 8: Spatio-temporal learning

5 CONCLUSION

Traditional RL has focused on direct learning unimodal univariate
statistics. In this paper, the sequential decisions are made by com-
bining the benefits of direct learning and the additional benefits
from indirect learning through the covariance structure. The multi-
modal indirect information learned from one observed geographical
location is transferred to other similar type locations.

The above multimodal learning example depends on the univari-
ate travel speed outcome variable. Traditional machine learning
frameworks overlook simultaneous observations of more than one
outcome variable in different locations and times without lowering
the prediction errors. The dynamic impact area of a prior event
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could predict the probability of posterior events [8, 9]. However,
when frequent minor events are occurring in a sequence, due to
high uncertainty, the literature could not reliably predict the dy-
namic spatiotemporal evolution of a mutual relationship between
events [7]. Machine learning with rule extraction [10] partially
alleviates Black box issues, but without an effort to reduce uncer-
tainty by observing a ground truth, the routing solutions are still
unreliable and intractable.

If there is a strong correlation structure found from simultaneous
observations with more than one outcome variable, learning wind
speed uncertainty can also remove the additional uncertainty of
other outcome variables. The future study will address the gaps in
current information provision systems by providing multimodal
multivariate informatics to any user and system with an optimized
policy. The assumption of exact information sharing between mul-
tiagents will be relaxed to sequential and partial information gain
with multimodal distribution, then further extended to multivari-
ate information gain. The developed algorithms are evaluated in
simulated scenarios.
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